Source code for padasip.filters.lms

"""
.. versionadded:: 0.1
.. versionchanged:: 1.2.0

The least-mean-square (LMS) adaptive filter is the most popular adaptive filter.

The LMS filter can be created as follows

    >>> import padasip as pa
    >>> pa.filters.FilterLMS(n)

where :code:`n` is the size (number of taps) of the filter.

Content of this page:

.. contents::
   :local:
   :depth: 1

.. seealso:: :ref:`filters`

Algorithm Explanation
==========================

The LMS adaptive filter could be described as

:math:`y(k) = w_1 \cdot x_{1}(k) + ... + w_n \cdot x_{n}(k)`,

or in a vector form

:math:`y(k) = \\textbf{x}^T(k) \\textbf{w}(k)`,

where :math:`k` is discrete time index, :math:`(.)^T` denotes the transposition,
:math:`y(k)` is filtered signal,
:math:`\\textbf{w}` is vector of filter adaptive parameters and
:math:`\\textbf{x}` is input vector (for a filter of size :math:`n`) as follows

:math:`\\textbf{x}(k) = [x_1(k), ...,  x_n(k)]`.

The LMS weights adaptation could be described as follows

:math:`\\textbf{w}(k+1) = \\textbf{w}(k) + \Delta \\textbf{w}(k)`,

where :math:`\Delta \\textbf{w}(k)` is

:math:`\Delta \\textbf{w}(k) = \\frac{1}{2} \mu \\frac{\partial e^2(k)}
{ \partial \\textbf{w}(k)}\ = \mu \cdot e(k) \cdot \\textbf{x}(k)`,

where :math:`\mu` is the learning rate (step size) and :math:`e(k)`
is error defined as

:math:`e(k) = d(k) - y(k)`.


Stability and Optimal Performance
==================================

The general stability criteria of LMS stands as follows

:math:`|1 - \mu \cdot ||\\textbf{x}(k)||^2 | \leq 1`.

In practice the key argument :code:`mu` should be set to really small number
in most of the cases
(recomended value can be something in range from 0.1 to 0.00001).
If you have still problems stability or performance of the filter,
then try the normalized LMS (:ref:`filter-nlms`).

Minimal Working Examples
==============================

If you have measured data you may filter it as follows

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    import padasip as pa

    # creation of data
    N = 500
    x = np.random.normal(0, 1, (N, 4)) # input matrix
    v = np.random.normal(0, 0.1, N) # noise
    d = 2*x[:,0] + 0.1*x[:,1] - 4*x[:,2] + 0.5*x[:,3] + v # target

    # identification
    f = pa.filters.FilterLMS(n=4, mu=0.1, w="random")
    y, e, w = f.run(d, x)

    # show results
    plt.figure(figsize=(15,9))
    plt.subplot(211);plt.title("Adaptation");plt.xlabel("samples - k")
    plt.plot(d,"b", label="d - target")
    plt.plot(y,"g", label="y - output");plt.legend()
    plt.subplot(212);plt.title("Filter error");plt.xlabel("samples - k")
    plt.plot(10*np.log10(e**2),"r", label="e - error [dB]");plt.legend()
    plt.tight_layout()
    plt.show()

An example how to filter data measured in real-time

.. code-block:: python

    import numpy as np
    import matplotlib.pylab as plt
    import padasip as pa

    # these two function supplement your online measurment
    def measure_x():
        # it produces input vector of size 3
        x = np.random.random(3)
        return x

    def measure_d(x):
        # meausure system output
        d = 2*x[0] + 1*x[1] - 1.5*x[2]
        return d

    N = 100
    log_d = np.zeros(N)
    log_y = np.zeros(N)
    filt = pa.filters.FilterLMS(3, mu=1.)
    for k in range(N):
        # measure input
        x = measure_x()
        # predict new value
        y = filt.predict(x)
        # do the important stuff with prediction output
        pass
        # measure output
        d = measure_d(x)
        # update filter
        filt.adapt(d, x)
        # log values
        log_d[k] = d
        log_y[k] = y

    ### show results
    plt.figure(figsize=(15,9))
    plt.subplot(211);plt.title("Adaptation");plt.xlabel("samples - k")
    plt.plot(log_d,"b", label="d - target")
    plt.plot(log_y,"g", label="y - output");plt.legend()
    plt.subplot(212);plt.title("Filter error");plt.xlabel("samples - k")
    plt.plot(10*np.log10((log_d-log_y)**2),"r", label="e - error [dB]")
    plt.legend(); plt.tight_layout(); plt.show()



Code Explanation
====================
"""
from padasip.filters.base_filter import AdaptiveFilter


[docs]class FilterLMS(AdaptiveFilter): """ This class represents an adaptive LMS filter. """ kind = "LMS"
[docs] def learning_rule(self, e, x): """ Override the parent class. """ return self.mu * x * e