Source code for padasip.filters.vslms_ang
"""
.. versionadded:: 1.2.2
The variable step-size least-mean-square (VSLMS) adaptive filter with Ang's adaptation
is implemeted according to
`DOI:10.1109/78.912925 <https://doi.org/10.1109/78.912925>`_.
The VSLMS filter with Benveniste adaptation can be created as follows
>>> import padasip as pa
>>> pa.filters.FilterVSLMS_Ang(n)
where `n` is the size (number of taps) of the filter.
Content of this page:
.. contents::
:local:
:depth: 1
.. seealso:: :ref:`filters`
Minimal Working Examples
======================================
If you have measured data you may filter it as follows
.. code-block:: python
import numpy as np
import matplotlib.pylab as plt
import padasip as pa
# creation of data
N = 500
x = np.random.normal(0, 1, (N, 4)) # input matrix
v = np.random.normal(0, 0.1, N) # noise
d = 2 * x[:, 0] + 0.1 * x[:, 1] - 4 * x[:, 2] + 0.5 * x[:, 3] + v # target
# identification
f = pa.filters.FilterVSLMS_Ang(n=4, mu=0.1, ro=0.0002, w="random")
y, e, w = f.run(d, x)
# show results
plt.figure(figsize=(15, 9))
plt.subplot(211);
plt.title("Adaptation");
plt.xlabel("samples - k")
plt.plot(d, "b", label="d - target")
plt.plot(y, "g", label="y - output");
plt.legend()
plt.subplot(212);
plt.title("Filter error");
plt.xlabel("samples - k")
plt.plot(10 * np.log10(e ** 2), "r", label="e - error [dB]");
plt.legend()
plt.tight_layout()
plt.show()
Code Explanation
======================================
"""
import numpy as np
from padasip.filters.base_filter import AdaptiveFilter
[docs]class FilterVSLMS_Ang(AdaptiveFilter):
"""
This class represents an adaptive VSLMS filter with Ang's adaptation.
"""
kind = "VSLMS_Ang"
def __init__(self, n, mu=1., ro=0.0002, a=0.95, **kwargs):
"""
**Kwargs:**
* `ro` : step size adaptation parameter (float) at the beginning.
It is an adaptive parameter.
* `a` : small constant close to 1 (but smaller). It works as a simplification
of the Benveniste's algoritm.
"""
super().__init__(n, mu, **kwargs)
self.ro = ro
self.a = a
self.last_e = 0
self.last_x = np.zeros(n)
self.last_fi = np.zeros(n)
self.last_mu = mu
[docs] def learning_rule(self, e, x):
"""
Override the parent class.
"""
fi = (self.a * self.last_fi) + (self.last_e * self.last_x)
mu = self.last_mu + (self.ro * e * np.dot(self.last_x, fi))
self.last_e, self.last_mu, self.last_x, self.last_fi = e, mu, x, fi
return mu * e * x